1,881 research outputs found

    Symmetry-enhanced supertransfer of delocalized quantum states

    Get PDF
    Coherent hopping of excitation rely on quantum coherence over physically extended states. In this work, we consider simple models to examine the effect of symmetries of delocalized multi-excitation states on the dynamical timescales, including hopping rates, radiative decay, and environmental interactions. While the decoherence (pure dephasing) rate of an extended state over N sites is comparable to that of a non-extended state, superradiance leads to a factor of N enhancement in decay and absorption rates. In addition to superradiance, we illustrate how the multi-excitonic states exhibit `supertransfer' in the far-field regime: hopping from a symmetrized state over N sites to a symmetrized state over M sites at a rate proportional to MN. We argue that such symmetries could play an operational role in physical systems based on the competition between symmetry-enhanced interactions and localized inhomogeneities and environmental interactions that destroy symmetry. As an example, we propose that supertransfer and coherent hopping play a role in recent observations of anomolously long diffusion lengths in nano-engineered assembly of light-harvesting complexes.Comment: 6 page

    Motion of pole-dipole and quadrupole particles in non-minimally coupled theories of gravity

    Full text link
    We study theories of gravity with non-minimal coupling between polarized media with pole-dipole and quadrupole moments and an arbitrary function of the space-time curvature scalar RR and the squares of the Ricci and Riemann curvature tensors. We obtain the general form of the equation of motion and show that an induced quadrupole moment emerges as a result of the curvature tensor dependence of the function coupled to the matter. We derive the explicit forms of the equations of motion in the particular cases of coupling to a function of the curvature scalar alone, coupling to an arbitrary function of the square of the Riemann curvature tensor, and coupling to an arbitrary function of the Gauss-Bonnet invariant. We show that in these cases the extra force resulting from the non-minimal coupling can be expressed in terms of the induced moments

    Direct Characterization of Quantum Dynamics

    Full text link
    The characterization of quantum dynamics is a fundamental and central task in quantum mechanics. This task is typically addressed by quantum process tomography (QPT). Here we present an alternative "direct characterization of quantum dynamics" (DCQD) algorithm. In contrast to all known QPT methods, this algorithm relies on error-detection techniques and does not require any quantum state tomography. We illustrate that, by construction, the DCQD algorithm can be applied to the task of obtaining partial information about quantum dynamics. Furthermore, we argue that the DCQD algorithm is experimentally implementable in a variety of prominent quantum information processing systems, and show how it can be realized in photonic systems with present day technology.Comment: 4 pages, 2 figures, published versio

    Minimising the heat dissipation of quantum information erasure

    Full text link
    Quantum state engineering and quantum computation rely on information erasure procedures that, up to some fidelity, prepare a quantum object in a pure state. Such processes occur within Landauer's framework if they rely on an interaction between the object and a thermal reservoir. Landauer's principle dictates that this must dissipate a minimum quantity of heat, proportional to the entropy reduction that is incurred by the object, to the thermal reservoir. However, this lower bound is only reachable for some specific physical situations, and it is not necessarily achievable for any given reservoir. The main task of our work can be stated as the minimisation of heat dissipation given probabilistic information erasure, i.e., minimising the amount of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the object in a specific pure state φ1|\varphi_1\rangle be no smaller than pφ1maxδp_{\varphi_1}^{\max}-\delta. Here pφ1maxp_{\varphi_1}^{\max} is the maximum probability of information erasure that is permissible by the physical context, and δ0\delta\geqslant 0 the error. To determine the achievable minimal heat dissipation of quantum information erasure within a given physical context, we explicitly optimise over all possible unitary operators that act on the composite system of object and reservoir. Specifically, we characterise the equivalence class of such optimal unitary operators, using tools from majorisation theory, when we are restricted to finite-dimensional Hilbert spaces. Furthermore, we discuss how pure state preparation processes could be achieved with a smaller heat cost than Landauer's limit, by operating outside of Landauer's framework
    corecore